
M o r e F r o m
 No Starch Press

Learn to Program with Minecraft
Craig R ichardson

•

think L ike a programmer, python edit ion
V. Anton Spraul

•

The Rust Programming Language
Steve Klabnik and Carol N ichols ,

w ith contribut ions from the rust community

•

The Book of R
T ilman M. Dav ies

•

Learn Java the easy way
bryson payne

•

Eloquent Javascript, 2nd edit ion
Mari jn Haverbeke

•

Understanding EcmaScript 6
Nicholas C . Zakas

•

Wicked cool Shell Scripts , 2nd edit ion
Dave Taylor and Brandon Perry

•

The L inux Command L ine
Will iam E . Shotts , Jr .

142 Chapter 7

Mission #38: The Midas Touch
Midas is a king of legend. Everything he touched turned to gold. Your
mission is to write a program that changes every block below the player to
gold—except for air and water, of course, or you’d be in real trouble! Recall
that the gold block has a value of 41, still water is 9, and air is 0.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

air = 0
water = 9

u # Add an infinite while loop here
 pos = mc.player.getTilePos()
 blockBelow = mc.getBlock(pos.x, pos.y - 1, pos.z)

v # Add if statement here
 mc.setBlock(pos.x, pos.y - 1, pos.z, 41)

Open IDLE and create a new file. Save the file as midas.py in the
whileLoops folder. You need to add a bit more to the program so it can do
what you need it to do. First, you’ll add an infinite while loop u. Remember
that an infinite while loop has a condition that is always True. You also need
to add an if statement that checks whether the block below the player is not
equal to air and not equal to still water v. The value of the block below the
player is stored in the blockBelow variable, and the values for air and water
are stored in the air and water variables.

When you’ve completed the program, save it and run it. The player
should leave a trail of gold behind them. When you jump in water or fly in
the air, the blocks below you should not change. Figure 7-7 shows the pro-
gram in action.

Figure 7-7: Every block I walk on turns to gold.

midas.py

Dance Parties and flower Parades with while Loops 143

To exit the infinite loop, go to Shell4Restart Shell in your IDLE shell
or click in the shell and press ctrl-C.

BonUs oBJeCTiVe: i ’M a PLoWMan

You can change midas.py to serve a variety of purposes . How would you change
it so it automatically changes dirt blocks to hoed farmland? How about changing
dirt blocks to grass blocks?

ending a while Loop with break
With while loops, you have complete control over how and when the loop
ends. So far you’ve only used conditions to end loops, but you can also use a
break statement. The break statement lets your code immediately exit a while
loop. Let’s look at this concept!

One way to use break statements is to put them in an if statement nested
in the loop. Doing so immediately stops the loop when the if statement’s
condition is True. The following code continually asks for user input until
they type "exit":

u while True:
v userInput = input("Enter a command: ")
w if userInput == "exit":
x break

 print(userInput)
y print("Loop exited")

This is an infinite loop because it uses while True u. Each time the loop
repeats, it asks for the user to enter a command v. The program checks
whether the input is "exit" w using an if statement. If the input meets the
condition, the break statement stops the loop from repeating x, and the
program continues on the line immediately after the body of the loop,
printing "Loop exited" to the Python shell y.

Mission #39: Create a Persistent Chat
with a Loop
In Mission #13 (page 76), you created a program that posts the user’s
message to chat using strings, input, and output. Although this program
was useful, it was quite limited because you had to rerun the program
every time you wanted to post a new message.

In this mission, you’ll improve your chat program using a while loop
so users can post as many messages as they want without restarting the
program.

144 Chapter 7

Open the userChat.py file in the strings folder and then save it as
chatLoop.py in the whileLoops folder.

To post a new message every time you want to without rerunning the
program, add the following to your code:

1. Add an infinite while loop to the program.

2. Add an if statement to the loop to check whether the user’s input is
"exit". If the input is "exit", the loop should break.

3. Make sure the userName variable is defined before the start of the loop.

When you’ve added the changes, save your program and run it.
A prompt in the Python shell will ask you to type in a username. Do this
and press enter. The program will then ask you to enter a message. Type
a message and then press enter. The program will keep asking you to
enter a message until you type exit. Figure 7-8 shows my chat program
running.

Figure 7-8: I’m chatting with myself.

BonUs oBJeCTiVe: BLoCk ChaT

Expand the chat feature so users can create blocks . For example, if the user enters
"wool", the program creates a wool block . You can do this by adding elif state-
ments to your if statement to check user input .

Dance Parties and flower Parades with while Loops 145

while-else statements
Like an if statement, while loops can have secondary conditions triggered
by else statements.

The else statement executes when the condition of a while statement is
False. Unlike the body of a while statement, the else statement will execute
only once, as shown here:

message = input("Please enter a message.")

while message != "exit":
 print(message)
 message = input("Please enter a message.")
else:
 print("User has left the chat.")

This loop repeats as long as the message entered is not equal to "exit". If
the message is "exit", the loop will stop repeating, and the body of the else
statement will print "User has left the chat."

If you use a break statement in the while statement, the else isn’t exe-
cuted. The following code is similar to the preceding example but includes
a nested if statement and a break statement. When the user types abort
instead of exit, the chat loop will exit without printing the "User has left
the chat." message to the chat.

message = input("Please enter a message.")

while message != "exit":
 print(message)
 message = input("Please enter a message.")
 if message == "abort":
 break
else:
 print("User has left the chat.")

The if statement checks whether the message entered is "abort". If this
is True, the break statement runs and the loop will exit. Because the break
statement was used, the body of the else statement will not run, and "User
has left the chat." will not be printed.

Mission #40: hot and Cold
In this mission, we’ll create a Hot and Cold game in Minecraft. If you’ve
never played, the idea is that your friend hides an object and you have to
find it. Your friend gives you hints based on how far away from the object
you are. If you’re close, your friend says “Hot,” and if you’re far away, they’ll
say “Cold.” When you’re right next to the object, they’ll say “You’re on fire!”
and if you’re very far away, they’ll say “Freezing!”

Think Like a Programmer, Python Edition 19

3-4. Write a program that reads at-bats and hits and displays the batting
average. (Cricket fans can compute batting average from runs and outs if
they prefer.)

3-5. This one will probably require a little Googling. Write a program
that computes an NCAA quarterback rating: read the relevant statistics and
display the answer.

Problem Solving With Variables and Mathematics
Now we’re ready to look at problems that require real problem solving. The
programming itself is just as simple as the previous examples, using the
same basic combination of input, calculations, and output, and the result-
ing programs are just as short. The difference is in the thought process that
must occur before the code is written.

An important note: while we’ll be solving these problems using the
Python we’ve seen to this point, some elements in these problems could
be solved more directly using techniques we’ll cover in later chapters. This
pattern will repeat throughout this book. We’ll try to push each language
concept as far as it can go, even though there may be other ways to solve the
same problem around the corner.

Why do this? For one thing, we don’t want to wait until we’ve covered
most of the language to start learning problem solving. This early exposure
to problem solving will develop your problem-solving skills better than wait-
ing. A chef who first learns to create a variety of tasty dishes using a single
pan and a few, simple ingredients will be better off than a chef who can’t
cope with anything less than a fully-stocked kitchen. In the same way, solv-
ing problems with restricted programming syntax will allow you to fully
understand the capabilities of each element of programming and help you
to unlock all your creative potential as a problem solver. You’ll also gain a
deeper appreciation of why programming languages have the features they
do when you explore the limitations of earlier features.

As explained in the introduction, the Python community encourages a
set of concepts they call Pythonic programming, and one Pythonic concept
is that there is one “right” general approach for each particular problem.
Because of this, a solution that deliberately avoids using more advanced
language features will not be Pythonic. But remember that the point of
this book is for you to learn to think like a programmer—to learn how to
solve programming problems on your own. The only way to know what the
Pythonic solution is for a particular problem is to ask someone, and you
can’t learn to solve problems on your own when someone else is giving you
the answers.

So we’ll write programs using the syntax we know at each point, and
trust that our solutions will become more Pythonic as we become more
knowledgeable and proficient.

20 Think Like a Programmer, Python Edition

Packs and Cans
Our first problem involves monetary calculations, but there’s more to it
than that:

Problem: Efficient Soda Buying
A local store sells six-packs of soda for $3.29. Individual cans can be bought
for 90 cents a can, Write a program to read the total number of soda cans
desired and display how many packs should be bought to result in the low-
est cost.

At first glance, this problem might seem just as straightforward as those
seen previously, but it isn’t. As a rule, and especially as a beginning pro-
grammer, never assume anything is trivial in programming. Always have a
plan, and don’t just jump into coding. If someone wanted to buy 22 cans,
for example, the right number of packs and individual cans is not immedi-
ately obvious, and even less obvious is how we can produce general formulas
for the answers.

Making a Table

Making a table of sample input and output is a good way to start when the
right output isn’t clear. Table 3-4 shows a range of input (the desired num-
ber of soda cans) from 1–12, the number of packs and individual cans that
should be bought to result in the lowest cost, and that cost.

Table 3-4: Sample Input and Output for Efficient Soda Buying

Cans Needed
(Input)

Six-Packs
(Output)

Individual Cans Total Cost

1 0 1 $0.90

2 0 2 $1.80

3 0 3 $2.70

4 1 0 $3.29

5 1 0 $3.29

6 1 0 $3.29

7 1 1 $4.19

8 1 2 $5.09

9 1 3 $5.99

10 2 0 $6.58

11 2 0 $6.58

12 2 0 $6.58

As you can see, buying individual cans is better when buying 1–3 cans,
then it becomes more economical to buy a six-pack, and this pattern repeats
as the number of cans increases. Creating the table provides data we can
use to test our program once it is written. Also, the table may give us some

Think Like a Programmer, Python Edition 21

hints in writing our program. The output, shown in the second column
of the table, has a definite pattern, but how to produce that pattern is not
immediately clear.

Guessing and Testing

Because the six-pack holds six cans, it’s logical to think that figuring out the
number of packs we should buy will involve dividing by six. In fact, if some-
one wanted to buy an exact multiple of six cans, simply dividing the num-
ber of cans by six would be the right answer. That’s not the right answer
here, but let’s see how wrong it actually is.

To do that, let’s augment the previous table with a new column that
shows the result of dividing the total number of cans by six. Because we
can’t buy part of a six-pack, we’ll use floor division, Python’s // operator.
The result is shown as Table 3-5.

Table 3-5: Floor-Division Results

Cans Needed
(Input)

Six-Packs
(Output)

Cans // 6

1 0 0

2 0 0

3 0 0

4 1 0

5 1 0

6 1 1

7 1 1

8 1 1

9 1 1

10 2 1

11 2 1

12 2 2

This is what I call guessing and testing; when you aren’t sure about a
mathematical formula, make an educated guess, compare the results to
what you need, and see if you can bring the two together. In this case, the
floor-division produces the right results, but two rows below where we would
like them. In other words, if we could just shift the third column up two
rows, it would match the desired output.

A Formula for the Pattern

Maybe that’s a clue to a solution. What if we used addition to shift the
results? If we added 2 to the number of cans before the floor division, then,
for example, an input of 4 would produce the results on row 6 of the third
column. Let’s apply this idea to our table to make sure it works (Table 3-6).

Guessing Game 3

Setting Up a New Project
To set up a new project, go to the projects directory that you created in
Chapter 1, and make a new project using Cargo, like so:

$ cargo new guessing_game --bin
$ cd guessing_game

The first command, cargo new, takes the name of the project (guessing_
game) as the first argument. The --bin flag tells Cargo to make a binary proj-
ect, similar to the one in Chapter 1. The second command changes to the
new project’s directory.

Look at the generated Cargo.toml file:

[package]
name = "guessing_game"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

[dependencies]

If the author information that Cargo obtained from your environment
is not correct, fix that in the file and save it again.

As you saw in Chapter 1, cargo new generates a “Hello, world!” program
for you. Check out the src/main.rs file:

fn main() {
 println!("Hello, world!");
}

Now let’s compile this “Hello, world!” program and run it in the same
step using the cargo run command:

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessing_game)
 Running `target/debug/guessing_game`
Hello, world!

The run command comes in handy when you need to rapidly iterate on
a project, and this game is such a project: we want to quickly test each itera-
tion before moving on to the next one.

Reopen the src/main.rs file. You’ll be writing all the code in this file.

Processing a Guess
The first part of the program will ask for user input, process that input, and
check that the input is in the expected form. To start, we’ll allow the player
to input a guess. Enter the code in Listing 2-1 into src/main.rs.

Filename: Cargo.toml

Filename: src/
main.rs

4 Chapter 2

use std::io;

fn main() {
 println!("Guess the number!");

 println!("Please input your guess.");

 let mut guess = String::new();

 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");

 println!("You guessed: {}", guess);
}

Listing 2-1: Code to get a guess from the user and print it out

This code contains a lot of information, so let’s go over it bit by bit. To
obtain user input and then print the result as output, we need to import the
io (input/output) library from the standard library (which is known as std):

use std::io;

By default, Rust imports only a few types into every program in the pre-
lude. If a type you want to use isn’t in the prelude, you have to import that
type into your program explicitly with a use statement. Using the std::io
library provides you with a number of useful io-related features, including
the functionality to accept user input.

As you saw in Chapter 1, the main function is the entry point into the
program:

fn main() {

The fn syntax declares a new function, the () indicate there are no
arguments, and { starts the body of the function.

As you also learned in Chapter 1, println! is a macro that prints a string
to the screen:

println!("Guess the number!");

println!("Please input your guess.");

This code is just printing a prompt stating what the game is and
requesting input from the user.

Storing Values with Variables
Next, we’ll create a place to store the user input, like this:

let mut guess = String::new();

Filename: src/
main.rs

Guessing Game 5

Now the program is getting interesting! There’s a lot going on in this
little line. Notice that this is a let statement, which is used to create vari-
ables. Here’s another example:

let foo = bar;

This line will create a new variable named foo and bind it to the value
bar. In Rust, variables are immutable by default. The following example
shows how to use mut before the variable name to make a variable mutable:

let foo = 5; // immutable
let mut bar = 5; // mutable

N o t e The // syntax starts a comment that continues until the end of the line. Rust ignores
everything in comments.

Now you know that let mut guess will introduce a mutable variable named
guess. On the other side of the equal sign (=) is the value that guess is bound
to, which is the result of calling String::new, a function that returns a new
instance of a String. String is a string type provided by the standard library
that is a growable, UTF-8 encoded bit of text.

The :: syntax in the ::new line indicates that new is an associated function
of the String type. An associated function is implemented on a type, in this
case String, rather than on a particular instance of a String. Some languages
call this a static method.

This new function creates a new, empty String. You’ll find a new function
on many types, because it’s a common name for a function that makes a
new value of some kind.

To summarize, the let mut guess = String::new(); line has created a
mutable variable that is currently bound to a new, empty instance of a
String. Whew!

Recall that we included the input/output functionality from the stan-
dard library with use std::io; on the first line of the program. Now we’ll
call an associated function, stdin, on io:

io::stdin().read_line(&mut guess)
 .expect("Failed to read line");

If we hadn’t listed the use std::io line at the beginning of the program,
we could have written this function call as std::io::stdin. The stdin func-
tion returns an instance of std::io::Stdin, which is a type that represents a
handle to the standard input for your terminal.

The next part of the code, .read_line(&mut guess), calls the read_line
method on the standard input handle to get input from the user. We’re
also passing one argument to read_line: &mut guess.

2.3 Vectors
Often you’ll want to perform the same calculations or comparisons upon
multiple entities, for example if you’re rescaling measurements in a data set.
You could do this type of operation one entry at a time, though this is clearly
not ideal, especially if you have a large number of items. R provides a far
more efficient solution to this problem with vectors.

For the moment, to keep things simple, you’ll continue to work with
numeric entries only, though many of the utility functions discussed here
may also be applied to structures containing non-numeric values. You’ll start
looking at these other kinds of data in Chapter 4.

2.3.1 Creating a Vector
The vector is the essential building block for handling multiple items in R.
In a numeric sense, you can think of a vector as a collection of observations
or measurements concerning a single variable, for example, the heights of
50 people or the number of coffees you drink daily. More complicated data
structures may consist of several vectors. The function for creating a vector
is the single letter c, with the desired entries in parentheses separated by
commas.

R> myvec <- c(1,3,1,42)

R> myvec

[1] 1 3 1 42

Vector entries can be calculations or previously stored items (including
vectors themselves).

R> foo <- 32.1

R> myvec2 <- c(3,-3,2,3.45,1e+03,64^0.5,2+(3-1.1)/9.44,foo)

R> myvec2

[1] 3.000000 -3.000000 2.000000 3.450000 1000.000000 8.000000

[7] 2.201271 32.100000

This code created a new vector assigned to the object myvec2. Some of
the entries are defined as arithmetic expressions, and it’s the result of the
expression that’s stored in the vector. The last element, foo, is an existing
numeric object defined as 32.1.

Let’s look at another example.

R> myvec3 <- c(myvec,myvec2)

R> myvec3

[1] 1.000000 3.000000 1.000000 42.000000 3.000000 -3.000000

[7] 2.000000 3.450000 1000.000000 8.000000 2.201271 32.100000

This code creates and stores yet another vector, myvec3, which contains
the entries of myvec and myvec2 appended together in that order.

Numerics, Arithmetic, Assignment, and Vectors 23

2.3.2 Sequences, Repetition, Sorting, and Lengths
Here I’ll discuss some common and useful functions associated with R vec-
tors: seq, rep, sort, and length.

Let’s create an equally spaced sequence of increasing or decreasing
numeric values. This is something you’ll need often, for example when
programming loops (see Chapter 10) or when plotting data points (see
Chapter 7). The easiest way to create such a sequence, with numeric values
separated by intervals of 1, is to use the colon operator.

R> 3:27

[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

The example 3:27 should be read as “from 3 to 27 (by 1).” The result is
a numeric vector just as if you had listed each number manually in parenthe-
ses with c. As always, you can also provide either a previously stored value or
a (strictly parenthesized) calculation when using the colon operator:

R> foo <- 5.3

R> bar <- foo:(-47+1.5)

R> bar

[1] 5.3 4.3 3.3 2.3 1.3 0.3 -0.7 -1.7 -2.7 -3.7 -4.7

[12] -5.7 -6.7 -7.7 -8.7 -9.7 -10.7 -11.7 -12.7 -13.7 -14.7 -15.7

[23] -16.7 -17.7 -18.7 -19.7 -20.7 -21.7 -22.7 -23.7 -24.7 -25.7 -26.7

[34] -27.7 -28.7 -29.7 -30.7 -31.7 -32.7 -33.7 -34.7 -35.7 -36.7 -37.7

[45] -38.7 -39.7 -40.7 -41.7 -42.7 -43.7 -44.7

Sequences with seq
You can also use the seq command, which allows for more flexible creations
of sequences. This ready-to-use function takes in a from value, a to value, and
a by value, and it returns the corresponding sequence as a numeric vector.

R> seq(from=3,to=27,by=3)

[1] 3 6 9 12 15 18 21 24 27

This gives you a sequence with intervals of 3 rather than 1. Note that
these kinds of sequences will always start at the from number but will not
always include the to number, depending on what you are asking R to
increase (or decrease) them by. For example, if you are increasing (or
decreasing) by even numbers and your sequence ends in an odd number,
the final number won’t be included. Instead of providing a by value, how-
ever, you can specify a length.out value to produce a vector with that many
numbers, evenly spaced between the from and to values.

R> seq(from=3,to=27,length.out=40)

[1] 3.000000 3.615385 4.230769 4.846154 5.461538 6.076923 6.692308

[8] 7.307692 7.923077 8.538462 9.153846 9.769231 10.384615 11.000000

[15] 11.615385 12.230769 12.846154 13.461538 14.076923 14.692308 15.307692

24 Chapter 2

[22] 15.923077 16.538462 17.153846 17.769231 18.384615 19.000000 19.615385

[29] 20.230769 20.846154 21.461538 22.076923 22.692308 23.307692 23.923077

[36] 24.538462 25.153846 25.769231 26.384615 27.000000

By setting length.out to 40, you make the program print exactly 40 evenly
spaced numbers from 3 to 27.

For decreasing sequences, the use of by must be negative. Here’s an
example:

R> foo <- 5.3

R> myseq <- seq(from=foo,to=(-47+1.5),by=-2.4)

R> myseq

[1] 5.3 2.9 0.5 -1.9 -4.3 -6.7 -9.1 -11.5 -13.9 -16.3 -18.7 -21.1

[13] -23.5 -25.9 -28.3 -30.7 -33.1 -35.5 -37.9 -40.3 -42.7 -45.1

This code uses the previously stored object foo as the value for from and
uses the parenthesized calculation (-47+1.5) as the to value. Given those
values (that is, with foo being greater than (-47+1.5)), the sequence can
progress only in negative steps; directly above, we set by to be -2.4. The use
of length.out to create decreasing sequences, however, remains the same
(it would make no sense to specify a “negative length”). For the same from

and to values, you can create a decreasing sequence of length 5 easily, as
shown here:

R> myseq2 <- seq(from=foo,to=(-47+1.5),length.out=5)

R> myseq2

[1] 5.3 -7.4 -20.1 -32.8 -45.5

There are shorthand ways of calling these functions, which you’ll learn
about in Chapter 9, but in these early stages I’ll stick with the explicit usage.

Repetition with rep
Sequences are extremely useful, but sometimes you may want simply to
repeat a certain value. You do this using rep.

R> rep(x=1,times=4)

[1] 1 1 1 1

R> rep(x=c(3,62,8.3),times=3)

[1] 3.0 62.0 8.3 3.0 62.0 8.3 3.0 62.0 8.3

R> rep(x=c(3,62,8.3),each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3

R> rep(x=c(3,62,8.3),times=3,each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0

[16] 62.0 8.3 8.3

The rep function is given a single value or a vector of values as its
argument x, as well as a value for the arguments times and each. The value
for times provides the number of times to repeat x, and each provides the

Numerics, Arithmetic, Assignment, and Vectors 25

2
B U I L D A

H I - L O G U E S S I N G G A M E A P P !

Let’s begin by coding a fun, playable
game in Java: the Hi-Lo guessing game.

We’ll program this game as a command-line
application, which is just a fancy way of saying

it’s text-based (see Figure 2-1). When the program
runs, the prompt will ask the user to guess a number
between 1 and 100. Each time they guess, the pro-
gram will tell them whether the guess is too high,
too low, or correct.

LearnJava.indb 11 2/6/2017 3:20:22 PM

12 Chapter 2

Figure 2-1: A text-based Hi-Lo guessing game

Now that you know how the game works, all you have to do is code the
steps to play it. We’ll start by mapping out the app at a high level, and then
code a very simple version of the game. By starting out with a goal in mind
and understanding how to play the game, you’ll be able to pick up coding
skills more easily, and you’ll learn them with a purpose. You can also enjoy
the game immediately after you fi nish coding it.

Planning the Game Step-by-Step
Let’s think about all the steps we’ll need to code in order to get the Hi-Lo
guessing game to work. A basic version of the game will need to do the
following:

1. Generate a random number between 1 and 100 for the user to guess.

2. Display a prompt, or a line of text, asking the user to guess a number in
that range.

3. Accept the user’s guess as input.

4. Compare the user’s guess to the computer’s number to see if it’s too
high, too low, or correct.

5. Display the results on the screen.

6. Prompt the user to guess another number until they guess correctly.

7. Ask the user if they’d like to play again.

We’ll start with this basic structure. In Programming Challenge #2,
you’ll try adding an extra feature, to tell the user how many tries it took to
guess the number correctly.

Creating a New Java Project
The fi rst step in coding a new Java app in Eclipse is creating a project.
On the menu bar in Eclipse, go to File4New4Java Project (or select
File4New4Project, then Java4Java Project in the New Project wizard).
The Create a Java Project dialog should pop up, as shown in Figure 2-2.

LearnJava.indb 12 2/6/2017 3:20:22 PM

Build a Hi-Lo Guessing Game App! 13

Figure 2-2: The New Java Project window for the
Hi-Lo guessing game app

Type HiLo into the Project name text box. Note that uppercase and
lowercase letters are important in Java, and we’ll get in the habit of using
uppercase letters to start all of our project, file, and class names, which is
a common Java practice. Leave all the other settings unchanged, and click
Finish. Depending on your version of Eclipse, you may be asked if you want
to open the project using the Java Perspective. A perspective in Eclipse is a
workspace set up for coding in a specific language. Click Yes to tell Eclipse
you’d like the workspace set up for convenient coding in Java.

Creating the HiLo Class
Java is an object-oriented programming language. Object-oriented programming
languages use classes to design reusable pieces of programming code. Classes
are like templates that make it easier to create objects, or instances of that
class. If you think of a class as a cookie cutter, objects are the cookies. And,
just like a cookie cutter, classes are reusable, so once we’ve built a useful class,
we can reuse it over and over again to create as many objects as we want.

The Hi-Lo guessing game will have a single class file that creates a guess-
ing game object with all the code needed to play the game. We’ll call our
new class HiLo. The capitalization matters, and naming the class HiLo follows
several Java naming conventions. It’s common practice to start all class names
with an uppercase letter, so we use a capital H in HiLo. Also, there should be no
spaces, hyphens, or special characters between words in a class name. Finally,
we use camel case for class names with multiple words, beginning each new
word with a capital letter, as in HiLo, GuessingGame, and BubbleDrawApp. The
words look like they have humps in the middle, just like a camel.

LearnJava.indb 13 2/6/2017 3:20:22 PM

6
THE SECRET LIFE OF OBJECTS

When a programmer says “object,” this is a loaded term.
In my profession, objects are a way of life, the subject
of holy wars, and a beloved buzzword that still hasn’t
quite lost its power.

To an outsider, this is probably a little confusing. Let’s start with a brief
history of objects as a programming construct.

History
This story, like most programming stories, starts with the problem of com-
plexity. One philosophy is that complexity can be made manageable by sep-
arating it into small compartments that are isolated from each other. These
compartments have ended up with the name objects.

An object is a hard shell that hides the gooey complexity inside it and
instead offers us a few knobs and connectors (such as methods) that present
an interface through which the object is to be used. The idea is that the inter-
face is relatively simple and all the complex things going on inside the object
can be ignored when working with it.

As an example, you can imagine an object that provides an interface to
an area on your screen. It provides a way to draw shapes or text onto this
area but hides all the details of how these shapes are converted to the actual
pixels that make up the screen. You’d have a set of methods—for example,
drawCircle—and those are the only things you need to know in order to use
such an object.

These ideas were initially worked out in the 1970s and 1980s and, in the
1990s, were carried up by a huge wave of hype—the object-oriented pro-
gramming revolution. Suddenly, there was a large tribe of people declaring
that objects were the right way to program—and that anything that did not
involve objects was outdated nonsense.

That kind of zealotry always produces a lot of impractical silliness, and
there has been a sort of counter-revolution since then. In some circles, ob-
jects have a rather bad reputation nowadays.

I prefer to look at the issue from a practical, rather than ideological,
angle. There are several useful concepts, most importantly that of encapsu-
lation (distinguishing between internal complexity and external interface),
that the object-oriented culture has popularized. These are worth studying.

This chapter describes JavaScript’s rather eccentric take on objects and
the way they relate to some classical object-oriented techniques.

Methods
Methods are simply properties that hold function values. This is a simple
method:

var rabbit = {};

rabbit.speak = function(line) {

console.log("The rabbit says '" + line + "'");

};

100 Chapter 6

rabbit.speak("I'm alive.");

// � The rabbit says 'I'm alive.'

Usually a method needs to do something with the object it was called
on. When a function is called as a method—looked up as a property and
immediately called, as in object.method()—the special variable this in its body
will point to the object that it was called on.

function speak(line) {

console.log("The " + this.type + " rabbit says '" +

line + "'");

}

var whiteRabbit = {type: "white", speak: speak};

var fatRabbit = {type: "fat", speak: speak};

whiteRabbit.speak("Oh my ears and whiskers, " +

"how late it's getting!");

// � The white rabbit says 'Oh my ears and whiskers, how

// late it's getting!'

fatRabbit.speak("I could sure use a carrot right now.");

// � The fat rabbit says 'I could sure use a carrot

// right now.'

The code uses the this keyword to output the type of rabbit that is speak-
ing. Recall that the apply and bind methods both take a first argument that
can be used to simulate method calls. This first argument is in fact used to
give a value to this.

There is a method similar to apply, called call. It also calls the function
it is a method of but takes its arguments normally, rather than as an array.
Like apply and bind, call can be passed a specific this value.

speak.apply(fatRabbit, ["Burp!"]);

// � The fat rabbit says 'Burp!'

speak.call({type: "old"}, "Oh my.");

// � The old rabbit says 'Oh my.'

Prototypes
Watch closely.

var empty = {};

console.log(empty.toString);

// � function toString(){...}

console.log(empty.toString());

// � [object Object]

The Secret Life of Objects 101

Introducing JavaScript Classes 167

Class-Like Structures in ECMAScript 5
As mentioned, in ECMAScript 5 and earlier, JavaScript had no classes. The
closest equivalent to a class was creating a constructor and then assigning
methods to the constructor’s prototype, an approach typically called creat-
ing a custom type. For example:

function PersonType(name) {
 this.name = name;
}

PersonType.prototype.sayName = function() {
 console.log(this.name);
};

var person = new PersonType("Nicholas");
person.sayName(); // outputs "Nicholas"

console.log(person instanceof PersonType); // true
console.log(person instanceof Object); // true

In this code, PersonType is a constructor function that creates a single
property called name. The sayName() method is assigned to the prototype so
the same function is shared by all instances of the PersonType object. Then,
a new instance of PersonType is created via the new operator. The resulting
person object is considered an instance of PersonType and of Object through
prototypal inheritance.

This basic pattern underlies many of the class-mimicking JavaScript
libraries, and that’s where ECMAScript 6 classes start.

Class Declarations
The simplest class form in ECMAScript 6 is the class declaration, which
looks similar to classes in other languages.

A Basic Class Declaration
Class declarations begin with the class keyword followed by the name of
the class. The rest of the syntax looks similar to concise methods in object
literals but doesn’t require commas between the elements of the class.
Here’s a simple class declaration:

class PersonClass {

 // equivalent of the PersonType constructor
 constructor(name) {
 this.name = name;
 }

 // equivalent of PersonType.prototype.sayName
 sayName() {

168 Chapter 9

 console.log(this.name);
 }
}

let person = new PersonClass("Nicholas");
person.sayName(); // outputs "Nicholas"

console.log(person instanceof PersonClass); // true
console.log(person instanceof Object); // true

console.log(typeof PersonClass); // "function"
console.log(typeof PersonClass.prototype.sayName); // "function"

The class declaration for PersonClass behaves similarly to PersonType in the
previous example. But instead of defining a function as the constructor, class
declarations allow you to define the constructor directly inside the class using
the special constructor method name. Because class methods use the concise
syntax, there’s no need to use the function keyword. All other method names
have no special meaning, so you can add as many methods as you want.

Own properties, properties that occur on the instance rather than the
prototype, can only be created inside a class constructor or method. In this
example, name is an own property. I recommend creating all possible own
properties inside the constructor function so a single place in the class is
responsible for all of them.

Interestingly, class declarations are just syntactic sugar on top of the
existing custom type declarations. The PersonClass declaration actually
creates a function that has the behavior of the constructor method, which
is why typeof PersonClass gives "function" as the result. The sayName() method
also ends up as a method on PersonClass.prototype in this example, similar to
the relationship between sayName() and PersonType.prototype in the previous
example. These similarities allow you to mix custom types and classes with-
out worrying too much about which you’re using.

n o t e Class prototypes, such as PersonClass.prototype in the preceding example, are read-
only. That means you cannot assign a new value to the prototype like you can with
functions.

Why Use the Class Syntax?
Despite the similarities between classes and custom types, you need to keep
some important differences in mind:

•	 Class declarations, unlike function declarations, are not hoisted. Class
declarations act like let declarations, so they exist in the temporal dead
zone until execution reaches the declaration.

•	 All code inside class declarations runs in strict mode automatically.
There’s no way to opt out of strict mode inside classes.

•	 All methods are nonenumerable. This is a significant change from
custom types, where you need to use Object.defineProperty() to make a
method nonenumerable.

Introducing JavaScript Classes 169

•	 All methods lack an internal [[Construct]] method and will throw an
error if you try to call them with new.

•	 Calling the class constructor without new throws an error.

•	 Attempting to overwrite the class name within a class method throws
an error.

With all of these differences in mind, the PersonClass declaration in the
previous example is directly equivalent to the following code, which doesn’t
use the class syntax:

// direct equivalent of PersonClass
let PersonType2 = (function() {

 "use strict";

 const PersonType2 = function(name) {

 // make sure the function was called with new
 if (typeof new.target === "undefined") {
 throw new Error("Constructor must be called with new.");
 }

 this.name = name;
 }

 Object.defineProperty(PersonType2.prototype, "sayName", {
 value: function() {

 // make sure the method wasn't called with new
 if (typeof new.target !== "undefined") {
 throw new Error("Method cannot be called with new.");
 }

 console.log(this.name);
 },
 enumerable: false,
 writable: true,
 configurable: true
 });

 return PersonType2;
}());

First, notice that there are two PersonType2 declarations: a let declara-
tion in the outer scope and a const declaration inside the immediately
invoked function expression (IIFE)—this is how class methods are for-
bidden from overwriting the class name while code outside the class is
allowed to do so. The constructor function checks new.target to ensure
that it’s being called with new; if not, an error is thrown. Next, the sayName()
method is defined as nonenumerable, and the method checks new.target to
ensure that it wasn’t called with new. The final step returns the constructor
function.

Web and Internet Users 181

services.amazon.com
www.6pm.com
www.abebooks.com
www.acx.com
www.afterschool.com
www.alexa.com

Amazon doesn’t tend to point outside its own site, but there are some
partner links that creep onto the home page. Other sites are different, of
course.

What if we split the links on the Amazon page into relative and absolute
links?

$ getlinks -a http://www.amazon.com/ | wc -l
51
$ getlinks -r http://www.amazon.com/ | wc -l
222

As you might have expected, Amazon has four times more relative links
pointing inside its own site than it has absolute links, which would lead to a
different website. Gotta keep those customers on your own page!

Hacking the Script
You can see where getlinks could be quite useful as a site analysis tool. For
a way to enhance the script, stay tuned: Script #69 on page 217 comple-
ments this script nicely, allowing us to quickly check that all hypertext refer-
ences on a site are valid.

#55 Getting GitHub User Information
GitHub has grown to be a huge boon to the open source industry and open
collaboration across the world. Many system administrators and developers
have visited GitHub to pull down some source code or report an issue to
an open source project. Because GitHub is essentially a social platform for
developers, getting to know a user’s basic information quickly can be use-
ful. The script in Listing 7-6 prints some information about a given GitHub
user, and it gives a good introduction to the very powerful GitHub API.

The Code

#!/bin/bash
githubuser--Given a GitHub username, pulls information about the user

if [$# -ne 1]; then
 echo "Usage: $0 <username>"
 exit 1
fi

182 Chapter 7

The -s silences curl's normally verbose output.
 curl -s "https://api.github.com/users/$1" | \

 awk -F'"' '
 /\"name\":/ {
 print $4" is the name of the GitHub user."
 }
 /\"followers\":/{
 split($3, a, " ")
 sub(/,/, "", a[2])
 print "They have "a[2]" followers."
 }
 /\"following\":/{
 split($3, a, " ")
 sub(/,/, "", a[2])
 print "They are following "a[2]" other users."
 }
 /\"created_at\":/{
 print "Their account was created on "$4"."
 }
 '
exit 0

Listing 7-6: The githubuser script

How It Works
Admittedly, this is almost more of an awk script than a bash script, but some-
times you need the extra horsepower awk provides for parsing (the GitHub
API returns JSON). We use curl to ask GitHub for the user , given as the
argument of the script, and pipe the JSON to awk. With awk, we specify a
field separator of the double quotes character, as this will make parsing the
JSON much simpler. Then we match the JSON with a handful of regular
expressions in the awk script and print the results in a user-friendly way.

Running the Script
The script accepts a single argument: the user to look up on GitHub. If the
username provided doesn’t exist, nothing will be printed.

The Results
When passed a valid username, the script should print a user-friendly sum-
mary of the GitHub user, as Listing 7-7 shows.

$ githubuser brandonprry
Brandon Perry is the name of the GitHub user.
They have 67 followers.
They are following 0 other users.
Their account was created on 2010-11-16T02:06:41Z.

Listing 7-7: Running the githubuser script

Web and Internet Users 183

Hacking the Script
This script has a lot of potential due to the information that can be retrieved
from the GitHub API. In this script, we are only printing four values from the
JSON returned. Generating a “résumé” for a given user based on the infor-
mation provided by the API, like those provided by many web services, is just
one possibility.

#56 ZIP Code Lookup
To demonstrate a different technique for scraping the web, this time using
curl, let’s create a simple ZIP code lookup tool. Give the script in Listing 7-8
a ZIP code, and it’ll report the city and state the code belongs to. Easy
enough.

Your first instinct might be to use the official US Postal Service website,
but we’re going to tap into a different site, http://city-data.com/, which config-
ures each ZIP code as its own web page so information is far easier to extract.

The Code

#!/bin/bash

zipcode--Given a ZIP code, identifies the city and state. Use city-data.com,
which has every ZIP code configured as its own web page.

baseURL="http://www.city-data.com/zips"

/bin/echo -n "ZIP code $1 is in "

curl -s -dump "$baseURL/$1.html" | \
 grep -i '<title>' | \
 cut -d\(-f2 | cut -d\) -f1

exit 0

Listing 7-8: The zipcode script

How It Works
The URLs for ZIP code information pages on http://city-data.com/ are struc-
tured consistently, with the ZIP code itself as the final part of the URL.

http://www.city-data.com/zips/80304.html

This consistency makes it quite easy to create an appropriate URL for a
given ZIP code on the fly. The resultant page has the city name in the title,
conveniently denoted by open and close parentheses, as follows.

Standard Input, Output, and Error
Many of the programs that we have used so far produce output of some
kind. This output often consists of two types. First, we have the program’s
results; that is, the data the program is designed to produce. Second, we
have status and error messages that tell us how the program is getting along.
If we look at a command like ls, we can see that it displays its results and its
error messages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such
as ls actually send their results to a special file called standard output (often
expressed as stdout) and their status messages to another file called standard
error (stderr). By default, both standard output and standard error are linked
to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard
input (stdin), which is, by default, attached to the keyboard.

I/O redirection allows us to change where output goes and where input
comes from. Normally, output goes to the screen and input comes from the
keyboard, but with I/O redirection we can change that.

Redirecting Standard Output
I/O redirection allows us to redefine where standard output goes. To
redirect standard output to another file instead of the screen, we use the >
redirection operator followed by the name of the file. Why would we want
to do this? It’s often useful to store the output of a command in a file. For
example, we could tell the shell to send the output of the ls command to
the file ls-output.txt instead of the screen:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the
results to the file ls-output.txt. Let’s examine the redirected output of the
command:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 167878 2012-02-01 15:07 ls-output.txt

Good—a nice, large, text file. If we look at the file with less, we will
see that the file ls-output.txt does indeed contain the results from our ls
command:

[me@linuxbox ~]$ less ls-output.txt

Now, let’s repeat our redirection test but this time with a twist. We’ll
change the name of the directory to one that does not exist:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt
ls: cannot access /bin/usr: No such file or directory

50 Chapter 6

We received an error message. This makes sense because we specified
the nonexistent directory /bin/usr, but why was the error message displayed
on the screen rather than being redirected to the file ls-output.txt ? The answer
is that the ls program does not send its error messages to standard output.
Instead, like most well-written Unix programs, it sends its error messages to
standard error. Since we redirected only standard output and not standard
error, the error message was still sent to the screen. We’ll see how to redirect
standard error in just a minute, but first, let’s look at what happened to our
output file:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 0 2012-02-01 15:08 ls-output.txt

The file now has zero length! This is because, when we redirect output
with the > redirection operator, the destination file is always rewritten from
the beginning. Since our ls command generated no results and only an
error message, the redirection operation started to rewrite the file and then
stopped because of the error, resulting in its truncation. In fact, if we ever
need to actually truncate a file (or create a new, empty file) we can use a
trick like this:

[me@linuxbox ~]$ > ls-output.txt

Simply using the redirection operator with no command preceding it
will truncate an existing file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting
the file from the beginning? For that, we use the >> redirection operator,
like so:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt

Using the >> operator will result in the output being appended to the
file. If the file does not already exist, it is created just as though the > oper-
ator had been used. Let’s put it to the test:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 503634 2012-02-01 15:45 ls-output.txt

We repeated the command three times, resulting in an output file three
times as large.

Redirecting Standard Error
edirecting standard error lacks the ease of using a dedicated redirection
operator. To redirect standard error we must refer to its file descriptor. A pro-
gram can produce output on any of several numbered file streams. While

Redirection 51

Founded in 1994, No Starch Press is one of
the few remaining independent technical book
publishers. We publish the finest in geek
entertainment—unique books on technology,
with a focus on open source, security, hacking,
programming, alternative operating systems,
and LEGO. Our titles have personality, our
authors are passionate, and our books tackle
topics that people care about.

VISIT WWW.NOSTARCH.COM
FOR A COMPLETE CATALOG.

No Starch Press 2017 Catalog for Humble Book Bundle: Py thon. Copyright © 2017 No Starch Press, Inc. All rights reserved. Le arn to Program with

Minecraf t® © Craig Richardson. think L ike a programmer, py thon edition © V. Anton Spraul. The Rust Programming L anguage © Ste ve Kl abnik and

Carol Nichols, with contributions from the rust communit y. The Book of R © Tilman M. Davies. le arn java the e asy way © bryson payne. Eloquent

Javascript, 2nd edition © Marijn Haverbeke. Understanding EcmaScript 6 © Nichol as C. Z ak as. Wicked cool Shell Scripts, 2nd edition © Dave Taylor

and Brandon Perry. The L inux Command L ine © Will iam E. Shot ts, Jr. No Starch Press and the No Starch Press logo are registered trademarks of

No Starch Press, Inc. No part of this work may be reproduced or transmit ted in any form or by any me ans, electronic or mechanical , including

photocopying, recording, or by any information storage or retrie val system, without the prior writ ten permission of No Starch Press, Inc.

http://www.nostarch.com/

	Table of Contents

	Learn to Program with Minecraft

	Think Like a Programmer, Python Edition
	The Rust Programming Language

	The Book of R
	Learn Java the Easy Way

	Eloquent JavaScript, 2nd Edition

	Understanding ECMAScript 6

	Wicked Cool Shell Scripts, 2nd Edition

	The Linux Command Line

